Subscripts

- adsorbate а
- liquid phase 1
- maximum concentration m
- solid phase s
- solute 1
- solvent 2
- 12 solute and solvent
- Ω independent of solute and solvent

Superscripts

- ٥ standard state
- œ infinite dilution

Registry No. Phenoi, 108-95-2; o-chlorophenol, 95-57-8; m-chlorophenol, 108-43-0; p-chiorophenol, 106-48-9; 2,4,6-trichiorophenol, 88-06-2; 2,3-dichlorophenol, 576-24-9; 2,4-dichlorophenol, 120-83-2; 2,5-dichlorophenol, 583-78-8; o-cresol, 95-48-7; m-cresol, 108-39-4; p-cresol, 106-44-5; 2,3-dimethylphenol, 526-75-0; 2,4-dimethylphenol, 105-67-9; 2,6dimethylphenol, 576-26-1; 3,4-dimethylphenol, 95-65-8; 3,5-dimethylphenol, 108-68-9; p-isopropylphenol, 99-89-8; o-nitrophenol, 88-75-5; p-nitrophenol, 100-02-7; o-methoxyphenol, 90-05-1; p-methoxyphenol, 150-76-5;

o-hydroxybenzoic acid, 69-72-7; o-isopropylphenol, 88-69-7; 2,6-dichlorophenol. 87-65-0; carbon. 7440-44-0.

Literature Cited

- Mattson, J. S.; Mark, H. B.; Malbin, M. D.; Weber, W. J.; Crittenden, J. C. J. Colloid Interface Sci. 1969, 31 (1), 116–130.
 Zogorski, J. S.; Faust, S. D.; Hass, J. H. J. Colloid Interface Sci.
- 1976, 55 (2), 329-341.
- (3) Peel, R. G.; Benedek, A. Environ. Scl. Technol. 1960, 14, 66.
 (4) Abe, I.; Hayashi, K.; Kitagawa, M.; Hirashima, T. Bull. Chem. Soc. Jpn. 1983, 56, 1002–1005.
 (5) Chitra, S. P.; Govind, R. AIChE J. 1988, 32 (1), 167–169.
 (5) Deliver C. Aberlin, C. Thellim, K. K. E. Schull, O. L. Macdilleld.
- Belfort, G.; Attshuler, G.; Thallum, K. K.; Feerick, C. P., Jr.; Woodfleid, K. L. In Fundamentals of Adsorption, Proceedings of the Engineering (6) Foundation Conference, Bavaria, West Germany, 1984; Myers, A. L., Nirmalakhandan, N.; Speece, R. E. Environ. Sci. Technol. 1990, 24,
- (7) 575-580
- (8) Dobbs, R. A.; Wang, W.; Govind, R. Environ. Scl. Technol. 1989, 23, 1092-1097
- (9) Plerotti, G.; Deal, G.; Derr, E. Ind. Eng. Chem. 1959, 51, 95.

Received for review May 16, 1991. Revised December 2, 1991. Accepted December 21, 1991. The research work was supported by a grant from Hindustan Lever Research Foundation (Sanction No. 47/86).

Vapor-Liquid Equilibria in the Systems of Toluene/Aniline, Aniline/Naphthalene, and Naphthalene/Quinoline

Chang-Ha Lee, Quen Chen, Rahoma S. Mohamed, and Gerald D. Holder*

Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Vapor-liquid equilibria for the aniline/naphthalene, toluene/aniline, and naphthalene/quinoline systems have been determined at 0-1500 kPa and 490-623 K by using a static equilibrium cell. The data can be accurately correlated with the modified Peng-Robinson equation of state by using density-dependent mixing rules. The binary interaction parameters and correction factors for the equation of state are reported at each isotherm. The presence of coal-derived solids in these binary systems did not influence any of the binary bubble pressures.

Introduction

Thermodynamic property correlations and equations of state have been developed for the petroleum industry largely on the basis of measurements in highly paraffinic systems. However, the liquids produced in coal liquefaction are highly aromatic and may contain heteroatoms such as sulfur, oxygen, and nitrogen. Since there is a scarcity of vapor-liquid equilibrium data for mixtures containing aromatic or heterocyclic compounds, additional data on such systems are needed.

Our goal of this study is to obtain vapor-liquid equilibria (VLE) data for model mixtures, representative of coal-derived liquids. Such compounds include polycyclic aromatics, cyclic alkanes, and compounds containing heteroatoms. These results contribute to a data base for aromatic compounds which may be present in coal liquefaction processes (1-13) so that coal liquids processing equipment can be accurately designed. A second goal of the study is to determine if the separation of coal liquids by distillation might be affected by the differential adsorption of these compounds on the solids (insoluble organic matter and ash) which may be present in coal liquefaction streams (14). The effect of the adsorption can be studied through measurement of the properties of heavy liquid model compounds with and without coal solids. Any variation of bubble pressure of a binary liquid mixture upon the addition of solids can reflect the preferential adsorption of one of the components of the liquid.

Experimental Section

The following list of chemicals were available with a purity of 99% or greater. Aldrich supplied toluene (27,037; 99.9+%), naphthalene (18,450; 99+%), aniline (24,228-4; 99.5+%), and quinoline (25,401-0; 99%). The purity of all chemicais, as measured by gas chromatography (Hewlett-Packard 5880A), was greater than 99%. All chemicals were used without further purification.

The coal solids were obtained from Gulf Research and Technology Center (Extracts P-99-65-25 Vacuum Coal Bottoms). The charcoal, a model coal solid, was available from Aidrich (24,227-6; Darco). Coal solids were extracted by a tetrahydrofuran (THF) solvent in a Soxhlet extraction unit to remove all organic compounds which may be adsorbed on the coal solid surface and to leave a solid composed of ash and insoluble organic matter (IOM). This ensures that any vapor pressure deviation which may result is not due to the extraction of organic compounds from the solid.

The experimental apparatus has been described previously (15). Prausnitz et al. measured the vapor-liquid equilibrium of a coal-derived mixture by using a recirculating still which can measure vapor and liquid composition without condensation (16, 17). However, in this study a stainless steel static equilibrium cell with a volume of 70 mL was used to determine the vapor-liquid equilibria and the effect of the differential adsorption of coal-derived mixtures on the solids. A sample of pure or binary liquid was gravimatically mixed and analyzed by GC and then charged to the evacuated stainless steel vessel such that the vapor space was quite small (5-20 mL). The vessel was then immersed in a high-temperature sand bath. The

Table I. Comparison of Direct Experimental Vapor Pressures P_{expt} of Pure Aniline and Pure Quinoline with Values P_{calc} Calculated Using the Coefficients A, B, and C, for Equation 1, as a Function of Temperature T, and Percentage Mean Relative Deviations, PMRD, Equation 2

		$P_{\rm calc}/$	kPa
T/K	$P_{ m expt}/ m kPa$	this work	lit. (18)
	Ar	niline	
429.4	45.2	45.9	46.3
470.9	143	142	143
479.1	172	172	174
512.4	361	356	358
552.1	740	744	745
591.4	1387	1387	1386
this work:	A = 15.09; B = 420 ref 18: Pl	08.16; C = -55.86 MRD = 0.86	6; $PMRD = 0.78$
	Qui	noline	
503.9	89.6	89.6	87.1
523.3	132	135	
544.9	207	207	
563.2	292	288	
583.2	400	402	
603.6	558	554	
615.6	661	661	

this work: A = 14.91; B = 4897.23; C = -33.44; PMRD = 0.83

Table II. Experimental Bubble Pressure P_{expt} of the Toluene (1)/Aniline (2) System at Mole Fraction x_1 of Toluene as a Function of Temperature *T*, Coefficients *A*, *B*, and *C*, Equation 1, and Percentage Mean Relative Deviations, PMRD, Equation 2

T/K	$P_{ m expt}/ m kPa$	T/K	$P_{\rm expt}/{ m kPa}$
$x_1 = 0.20071$		$x_1 = 0.39744$	
394.6	41.7	3 9 0.0	62.1
434.6	108	431.8	172
512.5	439	472.2	380
		513.3	781
		549.8	1307
A =	= 13. 96	<i>A</i> =	14.93
B =	4034.95	B = 4	351.14
C	C = 0	C =	12.78
PMR	D = 0.19	PMRI	0 = 0.95
$x_1 =$	0.592 26	$x_1 = 0$.809 40
390.i	81.7	331.6	15.5
429.4	207	412.4	179
471.0	494	453.4	445
511.7	982	495.5	917
547.5	1662	530.9	1684
A =	= 14.91	A =	15.44
B =	4117.00	B = 4	329.77
С	= 1.70	C =	9.29
PMRD = 0.69		PMRD	= 1.34

bubble pressure *P* exerted by this liquid mixture was measured as a function of temperature *T* in the range of 490–625 K. Pressures were measured using a Viatran pressure transmitter ($\pm 0.25\%$) with remote high-temperature diaphragm. Temperatures were measured with type K thermocouples to ± 0.05 K. The accuracy of the apparatus was verified by its ability to produce vapor pressures of pure components within 0.83% maximum error.

Equilibrium conditions were assumed when constant temperature and pressure were obtained for 15 min or longer. The pressure exerted by this mixture was then measured as a function of temperature. At the relatively low pressures reported in this study, the amount of the material in the vapor phase was negligible. This was verified by varying the amount of liquid charged to the cell and noting that the same bubble pressure was obtained. The accuracy of the data was limited by the purity of the liquids. The reported pressures are within 2% of the true values at the reported temperature and compositions.

Table III. Experimental Bubble Pressure P_{expl} of the Aniline (1)/Naphthalene (2) System at Mole Fraction x_1 of Aniline as a Function of Temperature T, Coefficients A, B, and C, Equation 1, and Percentage Mean Relative Deviations, PMRD, Equation 2

T/K	$P_{ m expt}/ m kPa$	T/K	$P_{\rm expt}/{ m kPa}$	
$x_1 =$	= 0.224 46	$x_1 = 0.40620$		
494.3	135	493.3	159	
514.1	199	515.7	248	
533.4	276	531.7	340	
553.5	39 0	552.9	494	
573.5	540	572.1	665	
593.0	728	592.5	919	
611.5	942	615.2	1262	
A :	= 15.34	A =	15.09	
B =	5287.36	B = -	4985.53	
<i>C</i> =	= -13.04	C = -26.58		
PMR	D = 0.24	PMRI	D = 0.34	
$x_1 =$	0.603 62	$x_1 = 0$	0.800 04	
490.8	187	492.2	205	
510.4	277	511.0	304	
572.6	801	531.8	453	
593.7	1100	570.6	876	
613.8	1469	591.2	1191	
		610.5	1562	
A = 15.07		<i>A</i> =	14.92	
B = 4953.24		B = 4819.51		
<i>C</i> =	-27.04	C = -28.35		
PMR	D = 0.51	PMRD = 0.36		

Table IV. Experimental Bubble Pressure P_{expt} of the Naphthalene (1)/Quinoline (2) System at Mole Fraction x_1 of Naphthalene as a Function of Temperature T, Coefficients A, B, and C, Equation 1, and Percentage Mean Relative Deviations, PMRD, Equation 2

T/K	P_{expt}/kPa	T/K	$P_{ m expt}/ m kPa$
$x_1 =$	0.200 40	$x_1 =$	0.400 85
522.2	142	523.2	157
543.1	212	542.8	228
563.1	306	562.8	325
586.5	454	583.6	461
604.1	596	604.1	634
621.3	768	620.9	815
Α	= 15.34	A =	15.09
B =	5287.36	B = -	4985.53
<i>C</i> =	= -13.04	C =	-26.58
PMF	RD = 0.24	PMRI	D = 0.34
$x_1 =$	0.499 02	$x_1 = 0$	0.739 93
505.1	113	503.3	119
523.3	161	523.0	177
543.2	237	543.7	259
562.8	338	563.4	367
583.0	474	583.4	508
603.0	645	603.6	693
622.8	853	621.5	891
Α	= 15.07	A =	14.92
B = 4953.24		B = b	4819.51
C =	= -27.04	C = -28.35	
PMF	RD = 0.51	PMRI	D = 0.36

Results and Discussion

The vapor pressure and the bubble pressure measurements of all the systems are shown in Tables I–IV. All pure components and constant mole fraction composition x_i binary P-Tdata were fitted with a three-constant Antoine equation (1) with

$$\ln (P/kPa) = A - \frac{B}{((T/K) + C)}$$
 (1)

$$PMRD = \left(\sum_{i}^{N} \frac{|P_{expt} - P_{calc}|}{P_{expt}}\right) \frac{100}{N}$$
(2)

Figure 1. Equilibrium pressure vs composition diagram for the aniline/naphthalene system.

Figure 2. Equilibrium pressure vs composition diagram for the toluene/aniline system.

a percentage mean relative deviation (PMRD), eq 2, of less than 1% between correlated and experimental pressures. Comparison with literature (18) indicates that the experimental errors in pure systems were less than 1%.

In this work, the P-x-T data were regressed to determine the binary interaction parameters for the Peng-Robinson equation of state (P-R EOS) by using the density-dependent mixing rules (19, 20). The P-R EOS (21) was given by

$$P = \frac{RT}{(V-b)} - \frac{a}{V(V+b) + b(V-b)}$$
(3)

where V is molar volume and R is gas constant. The a and b are the parameters representing the attractive force between molecules and hard sphere molecular volume, respectively, and

$$a = a(T_c) \alpha(T_r, \omega) \tag{4}$$

Figure 3. Equilibrium pressure vs composition diagram for the naphthalene/quinoline system.

Table V. Correction Factors C_a and C_b , Equations 7 and 8, for the Pure Component Vapor Pressures and Molar Volumes as a Function of Temperature T

T/K	Ca	Cb	T/K	C _s	Cb	
		Ar	niline			
3 9 3.15	0.9934	0.9977	533.15	1.0002	0.9984	
433.15	1.0094	1.0024	553.15	0. 9 785	0.9936	
473.15	1.0191	1.0044	573.15	0.9413	0.9866	
493.15	1.0188	1.0038	593.15	0.8819	0.9777	
513.15	1.0134	1.001 9	613.15	0.7846	0.9667	
		Naph	thalene			
493.15°	0.9643	0.9885	563.15	0.9639	0.9885	
503.15ª	0.9644	0.9889	573.15	0.9567	0.9876	
513.15	0.9769	0.9889	583.15	0.9474	0.9847	
523.15	0.9767	0.9899	593.15	0.9355	0.9828	
533.15	0.9754	0.9899	603.15	0.9204	0.9806	
543.15	0. 9 730	0.9897	613.15	0.9020	0.9780	
553.15	0.9692	0.9893	623.15	0.9794	0.9752	
		То	luene			
393.15	1.0200	1.0051	513.15	0.8231	0. 9 750	
433.15	1.0104	1.0027	553.15ª	0.2205	0.9453	
473.15	0.9629	0.9932				
		Qui	noline			
503.15ª	1.1425	1.0103	583.15	1.3123	1.0204	
523.15	1.1791	1.0135	603.15	1.3683	1.0213	
543.15	1.2188	1.0162	623.15	1.4378	1.0223	
563.15	1.2627	1.0185				

^aLiterature data (18).

κ

$$a(T_c) = 0.45724(R^2 T_c^2 / P_c)$$
(5)

$$\alpha(T_r,\omega) = [1 + \kappa(1 - T_r^{1/2})]^2$$
(6)

$$= C_{a}(0.379642 + 1.48503\omega -$$

 $0.164423\omega^2 + 0.016666\omega^3$) at $\omega > 0.5$

$$= C_{a}(0.37464 + 1.54426\omega - 0.2699\omega^{2}) \quad \text{at} \quad \omega \leq 0.5$$
(7)

$$b = C_{\rm b} [0.0778 (RT_{\rm c}/P_{\rm c})] \tag{8}$$

where critical pressure P_c is in kilopascals and critical temperature T_c in kelvin. T_r and ω are reduced temperature and acentric factor, respectively. In this study the correction fac-

Table VI. Interaction Parameters^a for the Peng-Robinson **Equation of State**

T/K	α ₁₂	$\beta_{12}/(\mathrm{cm}^3/\mathrm{mol})$	PMRD
	Aniline (1)/l	Naphthalene (2)	
493.15	-0.227 830	66.0167	1.20
513.15	-0.205075	60.5422	1.50
533.15	-0.204 219	61.2392	1.31
553.15	-0.205 439	61.8086	1.51
573.15	-0.143 432	42.9555	1.63
593.15	-0.122 200	36.5117	1.75
613.15	-0.152412	46.8263	1.93
	Toluene (1)/Aniline (2)	
393.15	0.118931	-30.891 7	0.82
433.15	0.189 996	-53.6101	1.61
473.15	0.379 911	-107.8840	1.74
513.15	0.542766	-153.1940	3.08
553.15	0.649 937	-181.6900	4.91
	Nanhthalene	(1)/Quincline (2)	
503 15	-0.042.9070	4 698 80	0.28
523 15	-0.0169750	-1 736 44	0.08
543 15	-0.017.0500	-1 454 48	0.00
563 15	-0.015 5000	-1 390.00	0.12
583 15	-0.015.8906	-0 559 805	0.12
603 15	_0.016.0000	0.303.000	0.15
603.15	0.0100000	-93 697 7	1 9
020.10	0.0700000	20.0211	1.2

 ${}^{a}\delta_{12} = \alpha_{12} + \beta_{12}/V.$

Table VII. Isothermal Vapor-Liquid Equilibrium Data

$\mathcal{Y}_{1 \text{ calc}}$	$P_{\rm expt}/{ m kPa}$	$P_{\rm calc}/{\rm kPa}$			
Aniline (1)/Naphthalene (2) at $T = 533.15$ K					
0.0	237	236			
0.368 44	281	290			
0.60283	350	350			
0.779 97	422	422			
0.89581	465	485			
1.0	530	530			
ene (1)/Aniliı	ne (2) at $T = 473$.15 K			
0.0	149	149			
0.48767	229	229			
0.77204	394	360			
0.898 23	513	513			
0.957 39	642	652			
1.0	750	750			
lene (1)/Quir	noline (2) at $T =$	563.15 K			
0.0	289	288			
0.249 57	308	308			
0.47520	330	329			
0.57584	341	341			
0.796 90	368	369			
1.0	402	402			
	<u>y_{1 calc}</u> (1)/Naphtha 0.0 0.368 44 0.602 83 0.779 97 0.895 81 1.0 ene (1)/Anilin 0.0 0.487 67 0.772 04 0.898 23 0.957 39 1.0 lene (1)/Quir 0.0 0.249 57 0.475 20 0.575 84 0.796 90 1.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

tors, C_a and C_b , were used in eqs 6 and 7 so that the pure component vapor pressure and liquid molar volumes were accurately predicted.

The following mixing rules were used for the parameters a and b

$$b = \sum_{i} x_i b_i \tag{9}$$

$$a = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij}$$
(10)

$$a_{ij} = (a_i a_j)^{1/2} (1 - \delta_{ij})$$
(11)

$$\delta_{ij} = \alpha_{ij} + \beta_{ij} / V \tag{12}$$

Equation 11 requires that the interaction parameter δ_{μ} vary linearly with the phase molar volume of the mixture. Using the above equations, the modified P-R EOS can be written as a fourth-order (quartic) equation in compressibility. The fugacity coefficient expressions are correspondingly changed (19, 20).

The interaction parameters were taken as those values

which minimized the following objective function

$$Q = \sum_{l}^{N} \frac{|P_{expt} - P_{calc}|}{P_{expt}}$$
(13)

The data can be accurately correlated with the modified P-R EOS, as shown in Figures 1-3. The Peng-Robinson parameters and correction factors at several temperatures are given in Tables V and VI, and isothermal data at a single temperature per system are given in Table VII. Note that the results are insensitive to the values used for $C_{\rm a}$ and $C_{\rm b}$. These parameters could be set to 1.0, but the values reported allow the pure component vapor pressures to be accurately reproduced. The isothermal data are obtained using eq 1 to correct for slight deviations in temperature from the specified value.

Experiments were conducted with up to 50 wt % solids (coal-derived IOM and charcoal). The solids did not influence any of the binary bubble pressures to a measurable degree. This indicates that no differential adsorption occurs. Thus, the presence of coal solids on these systems does not affect the degree of separation of the components by distillation in an equilibrium still.

Glossary

A,B,C	vapor pressure parameters, eq 1
а	energy parameter in eq 4, atm cm ⁶ /mol ²
Ь	size parameter in eq 8, cm3/mol
С,	correction factor, eq 7
C _b	correction factor, eq 8
N	number of data
Ρ	pressure, kPa
R	gas constant
Т	temperature, K
V	molar volume, cm ³ /mol
x	liquid-phase mole fraction
У	vapor-phase mole fraction
Greek L	etters
α	adjustable binary parameter
ß	adjustable binary parameter, cm3/mol

- δ Peng-Robinson binary interaction parameter
- acentric factor ω

Subscripts

с	critical point
calc	calculated value
expt	experimental value
1	component /
J	component /
r	reduced property

Registry No. Toluene, 108-88-3; aniline, 62-53-3; naphthalene, 91-20-3; quinoline, 91-22-5.

Literature Cited

- (1) Gray, J. A.; Holder, G. D. Selected Physical Chemical and Thermody-Gray, J. A.; Holder, G. D. Selected Physical Chemical and Thermody-namic Properties of Norrow Bolling Range Coal Liquids from the SRC-II Process; Report No. DE82012489, DOE/ET/10104-44; NTIS: Springfield, VA, 1982.
 Holder, G. D.; Gray, J. A. Ind. Eng. Chem. Process Des. Dev. 1983,
- 22, 424.
- Gray, J. A.; Brady, C. J.; Cunningham, J. R.; Freeman, J. R.; Wilson, G. M. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 410.
 Gray, J. A.; Holder, G. D.; Brady, C. J.; Cunningham, J. R.; Freeman, J.
- (a) Gray, J. A., Hotter, G. D., Diaby, O. J., Outriminghan, J. R., Pieterhan, J. R., Wilson, G. M. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 97.
 (5) Gray, J. A. Selected Physical, Chemical, and Thermodynamics Properties of Norrow Boiling Range Coal Liquids from the SRC-II Process; Report No. 627RM049, DOE/ET/10104-7; NTIS: Springfield, VA, 1985, 1997, 19 1981.
- Hwang, S. C.; Tsonopoulos, C.; Cunningham, J. R.; Wilson, G. M. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 127.
 Kidnay, A. J.; Yesavage, V. F. Enthalpy Measurement of Coal Derived Liquids, DOE Contract No. EX-76-C-01-2035, 1960.
 Brule, M. R.; Lin, C. T.; Lee, L. L.; Starling, K. E. AIChE J. 1982, 28, 616
- 616.

- (9) Lin, C. T.; Brule, M. R.; Young, F. K.; Lee, L. L. Hydrocarbon Process . 1980, 59-5, 229
- (10) Lin, C. T.; Brule, M. R.; Young, F. K.; Starling, K. E.; Chao, J. *Hydro-carbon Process.* **1980**, *59-8*, 117.
 (11) Lin, C. T.; Brule, M. R.; Young, F. K.; Lee, L. L.; Starling, K. E.; Chao,
- Hydrocarbon Process. 1960, 59-11, 225.
- (12) Wilson, G. M.; Johnston, G. H.; Hwang, S. C.; Tsonopoulos, C. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 94. (13) Wilson, G. M. In Thermophysical and Transport Properties of Synthetic
- Fuel Systems at Extreme Temperatures and Pressures; Foundations of Computer-Aided Chemical Process Design; Mah, R. H., Selder, V. E., Eds.; Engineering Foundation: New York, 1981; Vol. 2. (14) Holder, G. D. *Fluid Phase Equilib*. **1986**, *29*, 447. (15) Klara, S. M.; Mohamed, R. S.; Dempsey, D. M.; Holder, G. D. J.
- Chem. Eng. Data 1987, 32, 143.
- (16) Krevor, D. H.; Prausnitz, J. M. J. Chem. Eng. Data 1986, 31, 349. (17) Krevor, D. H.; Lam, F. W.; Prausnitz, J. M. J. Chem. Eng. Data 1986, 31. 353.
- (18) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, 1987; pp 659-732.
- (19) Mohamed, R. S.; Holder, G. D. Fluid Phase Equilib. 1967, 32, 295.
- (20) Mohamed, R. S.; Holder, G. D. Fluid Phase Equilib. 1988, 43, 359.
- (21) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15,

Received May 21, 1990. Revised August 12, 1991. Accepted November 11, 1991. We thank the Department of Energy/Fossil Energy for support of this research under Grant No. DE-PS22-86PC90501.

Vapor-Liquid Equilibria in the Systems of *n*-Decane/Tetralin, n-Hexadecane/Tetralin, n-Decane/1-Methylnaphthalene, and 1-Methylnaphthalene/Tetralin

Chang-Ha Lee, Dennis M. Dempsey, Rahoma S. Mohamed, and Gerald D. Holder*

Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Vapor-liquid equilibrium data for the binary systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methyinaphthalene, and 1-methylnaphthalene/tetralin were measured at a low to moderate pressure (0-1123 kPa) by using a static equilibrium cell. The binary P-x data were isothermally correlated using the modified Peng-Robinson equation of state to describe both vapor and liquid phases at 473.15, 533.15, and 573.15 K. Interaction parameters for density-dependent mixing rules are reported at each isotherm.

Introduction

The need for vapor-liquid equilibrium (VLE) data for mixtures of coal-derived liquids has been discussed previously (1-14). Such data would be invaluable in the design of process equipment involving the reaction or separation of coal liquids.

This present study is a continuation of efforts to develop a data base for aromatic and aromatic/aliphatic mixtures which may be present in coal liquefaction processes (1-13). Hightemperature vapor-liquid equilibrium data for model mixtures representing coal-derived liquids are relatively scarce. In this paper the use of the modified Peng-Robinson equation of state (15, 16) for correlating the data is presented.

Experimental Section

The experimental apparatus has been described previously (18, 19). A 70-mL static equilibrium cell was used. A 50-mL sample of pure or binary liquid was charged to the evacuated stainless steel vessel such that the vapor space was quite small (5-20 mL). The pressure P exerted by this mixture was then measured as a function of temperature T. At the pressures reported in this study, the amount of material in the vapor phase was negligible, as verified by varying the amount of liquid charged to the cell. The accuracy of the data was limited by the purity of the liquids. The reported pressures are within 2% of the true values at the reported temperatures and compositions.

The following chemicals were used: n-hexadecane (29,631-7; 99+%), *n*-decane (D90-1; 99+%), tetralin Table I. Comparison of Direct Experimental Vapor Pressures P_{expt} of Pure *n*-Decane, 1-Methylnaphthalene, Tetralin, and *n*-Hexadecane with Values P_{cale} Calculated Using the Coefficients A, B, and C, for Equation 1, as a Function of Temperature T, and Percentage Mean Relative **Deviation**, **PMRD**, Equation 2

	$P_{\rm calc}/{ m kPa}$			
T/K	$P_{\mathrm{expt}}/\mathrm{kPa}$	this work	lit. (19, 20)	
	n-D	ecane		
409.0	34.0	34.0	34.3	
449.0	103	103	106	
488.1	254	253	259	
526.8	533	532	539	
566.4	1016	1016	1023	
584.3	1320	1320	1332	
this work:	A = 14.86; B = 417 refs 19 and 20	72.08; $C = -40$: PMRD = 1	.99; PMRD = 0.19 38	
	1-Methylı	naphthalene		
485.0	45.2	45.2	47.2	
523.6	113	113	116	
559.5	228	231	234	
580.6	336	335	337	
594.8	423	424	425	
this work:	A = 14.36; B = 430 refs 19 and 20	$\begin{array}{l} \text{06.56; } C = -76 \\ \text{: PMRD} = 2. \end{array}$.87; PMRD = 0.33 02	
	Te	tralin		
464.8	71.7	71.7	74.3	
498.6	155	155	159	
516.0	221	221	224	
532.3	300	300	303	
562.4	503	503	503	
579.7	659	659	655	
this work:	A = 14.39; B = 413 refs 19 and 20	38.32; C = -56 : PMRD = 1.	.01; PMRD = 0.10 60	
n-Hexadecane				
504.5	25.6	25.6	25.6	
532.8	55.0	54.7	54.0	
5 46 .8	76.9	76.9	75.4	
566.1	119	119	115	
589.0	188	191	182	
this work:	A = 15.00; B = 481 refs 19 and 20	17.50; C = -94 : PMRD = 2	.61; $PMRD = 0.46$	

(10,241-5; 99%), and 1-methylnaphthalene (M5680-8; 99%). All were supplied by Aidrich. As a secondary measure, the